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Abstract

The purpose of this report is to describe the project related to the Machine Learning
course. We use different libraries (Keras, PyTorch, sklearn. . . ), in order to compare
the same model. For each task a GridSearch is carried out, trying to minimize the
number of trials, choosing the parameters to be tested in a smart way. We mainly
use a KFold CV as a validation schema and a final retraining for the best model
over the entire training.

1 Introduction

The goal of this report is to find the best model for each task (MONK’s dataset and ML
Cup), searching in a smart way for the best combination of parameters through Grid-
Search. Furthermore, we try to compare not only different models, but also the same
model, using different libraries, evaluating their performance in terms of metrics and exe-
cution time. We try different parameters, such as optimization algorithms (SGD, Adam,
RMSPROP, . . . ), weight initialization, activation function (relu, sigmoid, tanh. . . ), learn-
ing rate, batches (stochastic, mini-batch, batch), momentum (Nesterov or not) and finally
regularization when necessary to avoid overfitting.

2 Method

• Used libraries: Keras, Tensorflow, PyTorch, Sklearn, Pandas, Numpy, Matplotlib.

• Preprocessing: For the Monk’s dataset, we do a one-hot encoding for all the at-
tributes, obtaining 18 columns, including the target one. Instead of for ML-Cup,
no preprocessing is needed.

• Validation schema: For the Monk’s dataset, the test set has been already provided,
so we work only on the training set. Instead for the ML Cup, we split the dataset
provided in TR and TS (70-30%). However we use a StratifiedKFold CV for Monk
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and a KFold CV for ML-Cup, with a number of folds equal to 5 for Monk and 3 for
ML-Cup. In order to do this we use the method of sklearn library, which allows us
to set the shuffle of records before the splitting. Just for KNN and SVM we use a
hold out validation. Finally we retrain the best model over the whole training set.

• Preliminary trials: At first we create the custom loss function (Mean Euclidean
Error), which has some problems in training after a certain number of epochs in
Keras (all metrics are set to nan), so we decide to use MSE for training and still
compute MEE as required in order to have a standard metric.
For the ML Cup, we decide to use a single neural network model, which predicts
both targets variables.

3 Experiments

3.1 Monk Results

The neural network takes 17 features as input and just with one hidden layer we obtain
great results. The number of units for the layer for each task is indicated in table 1 . For
the hidden layer, the activation function used is the relu, while for the output layer (1
neuron) it is the sigmoid function. We try, among other things, stochastic, mini-batch
and batchsize, finally deciding, on the basis of the learning curves, for mini−batch = 10.
The model is trained with the MSE, while the table 1 shows the MEE, in particular
the average of a 5-fold cross validation for the training. Finally we try different weights
inizitialization, using at the end a normal distribution (mean 0 and standard deviation
0.005) and zero bias.

For task Monk 3 we observe that (without regularization) the learning curves show over-
fitting and instability. Therefore we decide, for the second problem, to stabilize the
descent of the gradient, inserting a momentum with value shown in the table 1, obtain-
ing better results. Then, in order to avoid overfitting, we introduce a L2 regularization
with the value shown in table 1.
The learning curves of loss and accuracy for the tasks are shown in table 2.

Task Units Optimizer eta momentum lambda MEE (TR/TS) Accuracy (TR\TS)
MONK 1 4 Adam 0.001 - - 0.009/0.0011 100%/100%
MONK 2 5 SGD 0.2 0.5 - 0.0107/0.0106 100%/100%

MONK 3 (no reg) 5 Adam 0.002 - - 0.0156/0.0746 100%/93%
MONK 3 5 SGD 0.004 0.5 0.03 0.2134/0.2009 93%/97%

Table 1: MONK’s tasks: hyperparameter and results
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MONK 1

MONK 2

MONK 3

MONK 3 REG

Table 2: Monk learning curves
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3.2 Cup Results

3.2.1 Validation schema

The ML-CUP20-TR.csv file is split in training (70%, 1066 records) and internal test
(30%, 458 records). Then, we proceed with a K-fold CV with a fold number k = 3.
Finally, the best model is chosen through a GridSearch, as explained in the following
sections.

3.2.2 Preliminary trials

From preliminary trials, we exclude a high learning rate, which led to highly unstable
learing curves, even with high momentum that fails to avoid oscillations.
Furthermore, a small initial GridSearch excludes a low momentum (even with small learn-
ing rate), so the values sought for this hyperparameter will be between 0.7 and 0.9.
Then, it is excluded that the initialization of the weights significantly influences the fi-
nal results: in fact, insignificant changes are observed as the initialization of the weights
varies (for the bias we try zeros(), i.e. all zero and ones(), i.e. all one; and for the weights,
we try normal and truncated normal distribution). We proceed by establishing a zero
distribution for the bias and a normal distribution with mean 0 and standard deviation
0.05. Finally, we exclude a batch algorithm, as worse results were obtained in terms of
loss. While with an online algorithm, unstable learning curves is obtained (also with
lower values of learning rate) and the training time also increases by a lot. It is therefore
decided to fix this hyperparameter to a mini batch = 10.
The variant of the Nesterov momentum is also tested, observing that there are no signif-
icant variations in the results, so we initially set this hyperparameter to False.

3.2.3 GridSearch hyperparameters

We run multiple GridSearch, keeping the number of epochs fixed at 1000 in order to
compare results in terms of loss. Moreover, a linear activation function has been set for
the output layer.

N. Layer = 1 N. Layer = 2 N. Layer = 4
[50,75,100,125,150] [32,64] [64,32] [32,64,128,256] [256,128,64,32]

Table 3: Configuration for layers and units

We run three different independent GridSearch, one for each combination of number of
layers/number of units as reported in table 3, varying in each GridSearch the hyperpa-
rameters reported in 4. As optimizer we use rmsprop and we don’t use the momentum
nesterov.
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Learning rate Range(0.0001, 0.0003, step = 0.00002)
Regularization [0.0001, 0.0003]

Momentum [0.7, 0.8, 0.9]
Activation function [Relu, tanh]

Table 4: Hyperparameters range for the three GridSearch

From the results obtained by this three GridSearch, three further GridSearch are run on
the best models for each number of layers, varying the parameters in table 5.

Optimizer [rmsprop, SGD]
Nesterov [True, False]

Table 5: Hyperparameters range for best models of first GridSearch

3.2.4 Best result grid search

The results reported in table 6, are the best for each number of layers (not absolutely).
From the trials obtained from the GridSearch (even those not shown in table 6), it is
observed that the variant of the Nesterov momentum does not significantly affect the
results (the best results show both configurations). Furthermore, the best results of the
GridSearch always have as activation function for hidden layer tanh (for this reason it
is not showed in the table). Observing the learning curves for all the best models in
the different configurations of layers and units, we note that there is a light overfitting,
due to the number of epochs. For this reason we set the number of epochs, for the next
phases, to 650 (after this epoch validation error starts increasing and training error does
not improve anymore).

N. Layers N. Units L. Rate Reg. Momentum Nesterov Optimizer MEE TR STD TR MEE VAL STD VAL
1 100 0.00025 0.0001 0.7 True SGD 2.5499 0.0481 2.9661 0.0837
1 125 0.00019 0.0 0.8 False SGD 2.5438 0.0762 2.9656 0.1243
2 [32, 64] 0.00007 0.0003 0.7 False rmsprop 2.5766 0.0078 2.8980 0.1115
2 [64, 32] 0.00007 0.0003 0.7 False SGD 2.5577 0.0093 2.9499 0.1428
4 [256, 128, 64, 32] 0.00013 0.002 0.9 False rmsprop 0.3754 0.0476 3.3944 0.0966

Table 6: Best result grid search for each configuration of N. Units

For the four-layer configuration we can observe low loss for training and high loss for
validation: this means that the model is in overfitting. We try to increase regularization
until a value of 0.6: in this way we reach a good learning curves, but loss drastically
gets worse (MEE TR = 16.8832, MEE V AL = 16.9015). We can interpret this results,
concluding that a four-layer configuration is a model too complex for this task, even if
regularized.
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3.2.5 Estimation computing time training

We report in table 7 the hardware resources used and the computing time in the re-
traing process of the best model with three different tools with 650 epochs (N.Layer =
2, N.Units = [32, 64]).

Processor Ram Tool Time (seconds)
AMD Ryzen 7, 2.20 GHz, 4 Cores 8 Gb Keras 95
Intel i7-6500U, 2.50 GHz, 2 Cores 16 Gb Keras 89
AMD Ryzen 7, 2.20 GHz, 4 Cores 8 Gb PyTorch 123
Intel i7-6500U, 2.50 GHz, 2 Cores 16 Gb PyTorch 94
AMD Ryzen 7, 2.20 GHz, 4 Cores 8 Gb MLP-sklearn 26
Intel i7-6500U, 2.50 GHz, 2 Cores 16 Gb MLP-sklearn 24

Table 7: Computing time training

3.2.6 Compare different models and tools

We decide to compare the best model of the GridSearch (N.Layer = 2, N.Units =
[32, 64]) in table 6 in Keras with the same model in PyTorch and MLPRegressor of
sklearn. We obtaine the results in table 8.

Tool MEE TR STD TR MEE VAL STD VAL
Keras 2.5766 0.0078 2.8980 0.1115

PyTorch 2.9458 0.0568 3.1375 0.0941
MLP sklearn 2.5682 0.0478 2.9974 0.0478

Table 8: Results best model in three different tools

We can observe similar loss results for all three tools: PyTorch shows the highest loss in
validation and highest computing time as shown in table 7.

We also try to use SVM for regression and KNN for regression. For this two mod-
els, we decide to do a hold out validation and to use the coefficient of determination R2
in order to do model selection. Moreover, we build two different models, one for target
x and one for target y: because KNN and SVM predict just one variable at time, but
MEE loss has been computed on both predictions.

• KNNRegressor: We run a GridSearch with different values of k (range(2, 20)), uni-
form weights and distance-based weights and different distance metrics: Manhat-
tan, Euclidean and Minkowski with different values for the exponent in range(3, 20).
The best model with parameters and loss values is in table 9.
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Target K Weights Metric MEE TR MEE VAL
x 18 Distance-based Euclidean

0 3.0130
y 7 Distance-based Manhattan

Table 9: Results for KNN models for target x and y

• SVMRegressor: We run a GridSearch with different values of regularization param-
eter C in range(0.2, 1, step = 0.2), of paramter epsilon (epsilon-tube within which
no penalty is associated in the training loss function with points predicted within
a distance epsilon from the actual value) in range(0.1, 2, step = 0.1). We also
try different kernel type between linear, polynomial (with degree in range(1, 10)),
gaussian, hyperbolic tangent (sigmoid) with gamma in range(0.1, 2, 0.1) and de-
fault value scale = 1

(n features∗X.var())
and auto = 1

(n features)
. The best model with

parameter and loss values is in table 10.

Target C Epsilon Kernel Gamma Degree MEE TR MEE VAL
x 1.8 0.3 rbf scale -

6.1992 7.6977
y 1.8 1.9 rbf 1.9 -

Table 10: Results for SVM model for target x and y

3.2.7 Final model used for blind test

Finally, the final model used for blind test is the one with parameters shown in table 11
and results in table 12 obtained on training and validation. For the test, we decide to
retrain 10 times and take the average on the test of these 10 different models, in order to
minimize the influence of randomness in the initialization of the weights. The model was
chosen among the best results in table 6 based on the MEE on validation. We choose
Keras as tool for the final model because it has better results than PyTorch (and MLP-
sklearn), although they do not vary too much.
We can observe learnig curves for the final model in figure 1; figure 1.b shows the zoomed
plot on the vertical axis.

N. Layers N. Units Act. Func. Hidden Act. Func. Output L. Rate Reg. Momentum Nesterov Optimizer
2 [32, 64] Tanh Linear 0.00007 0.0003 0.7 False rmsprop

Table 11: Hyperparameters of best model used for Blind test

MEE TR STD TR MEE VAL STD VAL MEE TEST STD TEST
2.5766 0.0078 2.8980 0.1115 2.8451 0.0209

Table 12: Results of best model used for Blind test
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(a) MEE loss (b) MEE loss zoomed

Figure 1: MEE loss best model

4 Conclusion

The development of this project made us understand the importance of the theory and
knowledge of the different hyperparameters, a key prerequisite for their critical and con-
scious use. We used different optimizers with default values: in fact we wanted to try
different optimization algorithms anyway, but a possible continuation of the project would
have been to try different configurations of these advanced optimizers. The most critical
phase is the selection of hyperparameters, for which we spend most of the time and com-
putational resources: this justifies our choices for the GridSearches described in section
3.2.3. We have assumed possible values of some hyperparameters from the preliminary
trials, sometimes fixing them and we are aware that this is not the right way to proceed,
but for time constraints we were obliged to search a trade off between the right way and
a plausible way, fixing some parameters. However we are very satisfied with the work
done as we were able to compare different tools and models.

BLIND TEST RESULTS:

• Name result files: lore giuse ML-CUP20TS.csv

• Nickname: lore giuse
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Agreements

We agree to the disclosure and publication of my name, and of the results with preliminary
and final ranking.
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